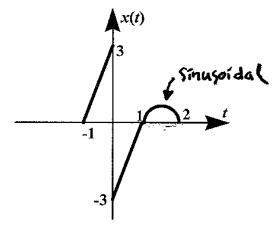
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

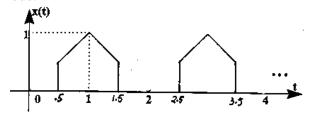
ECEN 4413/MAE 4053 Automatic Control Systems Spring 2011

Midterm Exam #1

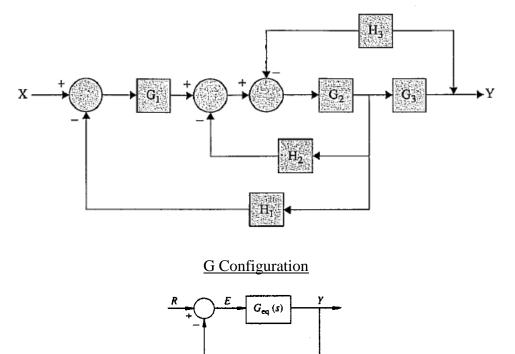

Pick one out of Problems 1 and 2, and do all Problems 3, 4 and 5.

Name : _____

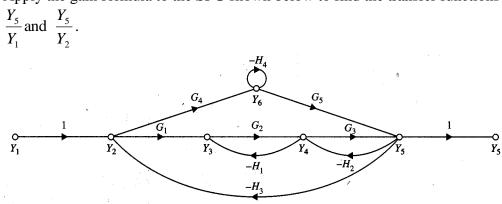
E-Mail Address:_____


Problem 1:

Describe the following signal, x(t), in terms of some basis functions (i.e., unit step, unit ramp and sinusoidal waveforms)


Problem 2:

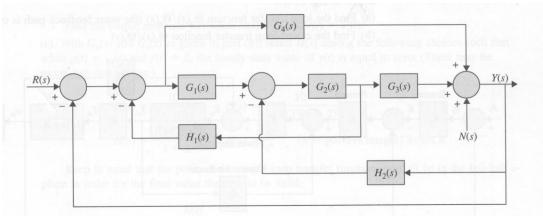
Determine the Laplace transform of the following signal, x(t), with an infinite number of periods.


Problem 3:

Using *block diagram reduction technique* to rearrange the following block diagram into the equivalent *G* configuration of the feedback control system shown below.

Problem 4:

Apply the gain formula to the SFG shown below to find the transfer functions of Y_2 , Y_2


Problem 5:

The block diagram of a feedback control system is shown below

a) Apply the SFG gain formula directly to the block diagram to find the transfer

functions
$$\frac{Y(s)}{R(s)}\Big|_{N=0}$$
 and $\frac{Y(s)}{N(s)}\Big|_{R=0}$

- b) Express Y(s) in terms of R(s) and N(s) when both inputs are applied simultaneously.
- c) Find the desired relation among the transfer functions $G_1(s)$, $G_2(s)$, $G_3(s)$, $G_4(s)$, $H_1(s)$ and $H_2(s)$ so that the output Y(s) is not affected by the disturbance signal N(s) at all.

